(Lawton, Hoh, Johnson \& Knisely, 1973, and references cited therein) is $2 \cdot 54 \AA$.

The closest distances between the tribromide anion and the decamethylferrocenium cation are $3 \cdot 447$ (8) \AA for $\operatorname{Br}(1) \cdots C(3)$, and $3 \cdot 30-3 \cdot 36 \AA$ for $\mathrm{Br}(1)$ and H atoms at the methyl C atoms $\mathrm{C}(4)$ and $\mathrm{C}(5)$. This rules out stronger bonding interactions between the two moieties.

We thank the Verband der Chemischen Industrie for financial support.

References

Bats, J. W., de Boer, J. J. \& Bright, D. (1971). Inorg. Chim. Acta, 5, 605-610.
Bernstein, T. \& Herbstein, F. H. (1968). Acta Cryst. B24, 1640-1645.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Endres, H. (1986). Z. Naturforsch. Teil B, 41, 1437-1442.
Frenz, B. A. (1981). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

Freyberg, D. P., Robbins, J. L., Raymond, K. N. \& Smart, J. C. (1979). J. Am. Chem. Soc. 101, 892-897.

Hillman, M. \& Larson, A. C. (1985). J. Organomet. Chem. 280, 389-396.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lawton, S. L., Нон, D. M., Johnson, R. C. \& Knisely, A. S. (1973). Inorg. Chem. 12, 277-283.

Miller, J. S., Calabrese, J. C., Rommelmann, H., Chittipeddi, S. R., Zhang, J. H., Reiff, W. M. \& Epstein, A. J. (1987). J. Am. Chem. Soc. 109, 769-781.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Paulus, E. F. \& Schäfer, L. (1978). J. Organomet. Chem. 144, 205-213.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
Struchkov, Yu. T., Andrianov, V. G., Sal'nikova, T. N., Lyatifov, I. R. \& Materikova, R. B. (1978). J. Organomet. Chem. 145, 213-223.

Acta Cryst. (1990). C46, 41-44

Structure of 1,1-Dicarbonyl-1,1-bis(dimethylphenylphosphine)-2,3-bis(methoxy-carbonyl)-1-ruthenaindene, a Ruthenium(II) Complex Containing a Five-Membered Metallacycle

By Joseph R. Crook
Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
Federico Giordano
Dipartimento di Chimica, Universita di Napoli, Via Mezzocannone 4, 80134 Napoli, Italy
Roger J. Mawby
Department of Chemistry, University of York, York YO1 5DD, England
and Amanda J. Reid and Colin D. Reynolds
Structural Biophysics Unit, School of Information Science and Technology, Liverpool Polytechnic, Liverpool L3 3AF, England

(Received 5 March 1989; accepted 16 May 1989)
 0108-2701/90/010041-04\$03.00
$0.64 \mathrm{~mm}^{-1}, F(000)=668, T=290(2) \mathrm{K}, R=0.044$ for 4556 observed reflections with $F_{o}>3 \sigma\left(F_{o}\right)$ and 352 parameters. In the solid state the complex exists as discrete monomeric units, with slightly irregular octahedral geometry about the Ru atom. Within the planar five-membered metallacycle the $\mathrm{Ru}-\mathrm{C}$ dis© 1990 International Union of Crystallography
tances are 2.123 (5) and 2.099 (4) \AA. The average $\mathrm{Ru}-\mathrm{P}$ and $\mathrm{Ru}-\mathrm{C}$ (carbonyl) distances are 2.363 (1) and 1.916 (5) \AA, respectively.

Introduction. We have shown that treatment of the ruthenium(II) complex $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ with the alkyne $\mathrm{MeO}_{2} \mathrm{CC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ results in the formation of an alkenyl complex $\left[\mathrm{Ru}(\mathrm{CO})_{2^{-}}\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{Cl}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. A study of the structure of the product by X-ray diffraction revealed that $c i s$-addition of the $\mathrm{Ru}-\mathrm{Cl}$ bond to the alkyne had occurred and we suggested a mechanism involving substitution of a carbonyl ligand by the alkyne, intramolecular rearrangement to give fivecoordinate $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{Cl}\right\} \mathrm{Cl}-\right.$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$, and reintroduction of the carbonyl ligand into the vacant coordination site (Holland, Howard \& Mawby, 1983).

We have also found that aryl complexes of ruthenium(II), $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} X-4\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right](X=\mathrm{H}$, $\mathrm{Me}, \mathrm{OMe}$ or Cl$)$ react with $\mathrm{MeO}_{2} \mathrm{CC} \equiv$ $\mathrm{CCO}_{2} \mathrm{Me}$, but in these reactions the alkyne is inserted into the metal-aryl rather than the metal-chlorine bond. When heated in CHCl_{3} solution, the products $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} X-4\right)\right\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ yielded several species: in each case, elemental analysis suggested that one of the reactions which took place involved the elimination of HCl . Assuming that the addition of the ruthenium - aryl bond to the alkyne was cis, we suggested on the basis of NMR evidence that HCl elimination might result from attack by the metal on the aryl group, yielding five-membered metallacycles $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{3} X\right\}\right.$ ($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] (Crook, Chamberlain \& Mawby, 1989). Here we report the structure of one of these complexes ($X=\mathrm{H}$) by X-ray diffraction.

Experimental. The complex was prepared as described previously (Crook et al., 1989). Crystals suitable for X-ray analysis were obtained by recrystallization from a mixture of ethanol and water. A needle-shaped single crystal of dimensions $0.09 \times$ $0.14 \times 0.28 \mathrm{~mm}$ was selected for crystal structure determination. Intensity data were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer using Zr -filtered Mo $K \alpha$ radiation ($\lambda=$ $0.71073 \AA$). Unit-cell dimensions were obtained by least-squares methods for 25 reflections in the range $8<\theta<15^{\circ}$. Data were collected to $\theta_{\max }=29^{\circ}$ using the $\omega / 2 \theta$ scan method and were corrected for Lorentz and polarization effects. Corrections for absorption were not applied. The range for h was -16 to 16 , for $k-16$ to 16 and for $l-17$ to 0 . The intensity variation over the period of data collection was less than 3%. Of the 8174 independent reflections measured, 4556 with $F_{o}>3 \sigma\left(F_{o}\right)$ were used in the
refinement, $R_{\text {int }}=0.025$. The structure was solved by standard Patterson techniques and refined using fullmatrix least-squares refinement based on F with weights $w=\left[\sigma^{2}\left(F_{o}\right)\right]^{-1}$. Anisotropic thermal parameters for non- H atoms were included in final cycles. The H positions were estimated geometrically; H atoms were given isotropic thermal factors derived from those of the parent atoms and were not refined. Highest peak in the final difference Fourier synthesis: $0.41 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974); shift-to-e.s.d. ratio in final refinement cycle <0.01. Final $R=0.044, w R=0.062, S=1.082$.

Calculations were performed using the $S D P$ system of computer programs (Enraf-Nonius, 1979).

Discussion. The structure consists of discrete molecules with no intermolecular contacts between non-H atoms shorter than $3.35 \AA$. As shown in Fig. 1 , the complex is indeed the metallacycle $\left[\mathrm{Ru}(\mathrm{CO})_{2^{-}}\right.$ $\left.\left.\left\{\mathrm{C}_{(\mathrm{CO}}^{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. Atomic coordinates are listed in Table 1,* and selected bond lengths and angles in Table 2.

The ligand arrangement around the Ru atom is not greatly distorted from regular octahedral. The most notable departure from regular geometry is the angle $\mathrm{C}(17)-\mathrm{Ru}-\mathrm{C}(26)\left[77.5(2)^{\circ}\right]$, which forms part of the five-membered ring. The remaining angles in the ring, which is essentially planar and also coplanar with the six-membered ring to which it is

[^0]

Fig. 1. The molecular structure of $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left\{\mathrm{C}_{\left(\mathrm{CO}_{2} \mathrm{Me}\right)}=\right.\right.$ $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$] showing the atomic numbering scheme.

Table 1. Final atomic coordinates and $B_{e q}$ values for the non- H atoms

$\begin{aligned} B_{\mathrm{eq}}=(4 / 3) & {\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right.} \\ & +a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)] . \end{aligned}$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
u	-0.26965 (3)	-0.13149 (3)	-0.23729 (3)	2.507 (6)
(1)	-0.2006 (1)	-0.3572 (1)	-0.3005 (1)	2.92 (3)
(2)	-0.3140 (1)	0.0883 (1)	-0.1984 (1)	$3 \cdot 13$ (3)
(1)	0.2354 (3)	-0.3183 (4)	-0.4336 (4)	5.9 (1)
(2)	0.1723 (3)	-0.1970 (4)	-0.2636 (4)	5.9 (1)
(3)	0.0515 (4)	-0.3294 (3)	-0.1364 (3)	5.1 (1)
(4)	-0.0658 (3)	-0.1086 (3)	-0.0661 (3)	4.35 (9)
(5)	-0.3378 (4)	-0.1212 (4)	0.0014 (3)	5.5 (1)
(6)	-0.5481 (3)	-0.0479 (4)	-0.2666 (4)	6.3 (1)
(1)	-0.2731 (5)	-0.3893 (5)	-0.4084 (4)	$4 \cdot 2$ (1)
(2)	-0.0243 (5)	-0.4718 (5)	-0.3548 (4)	$4 \cdot 2$ (1)
(3)	-0.2415 (4)	-0.4307 (4)	-0.1998 (4)	$3 \cdot 2$ (1)
(4)	-0.1699 (6)	-0.4541 (5)	-0.1193 (5)	4.9 (1)
(5)	-0.1998 (7)	-0.5086 (5)	-0.0403 (5)	6.0 (2)
(6)	-0.2943 (7)	-0.5394 (5)	-0.0405 (5)	6.6 (2)
(7)	-0.3643 (6)	-0.5144 (5)	-0.1159 (6)	6.0 (2)
(8)	-0.3371 (5)	-0.4639 (5)	-0.1993 (5)	4.4 (1)
(9)	-0.1740 (5)	0.1105 (4)	-0.2361 (5)	4.3 (1)
(10)	-0.3753 (5)	0.1717 (5)	-0.0549 (4)	4.5 (1)
(11)	-0.4408 (4)	$0 \cdot 2023$ (4)	-0.2559 (4)	3.4 (1)
(12)	-0.5724 (5)	0.2577 (6)	-0.2100 (5)	5.1(2)
(13)	-0.6711 (6)	0.3489 (7)	-0.2498 (5)	$6 \cdot 3$ (2)
(14)	-0.6334 (7)	$0 \cdot 3863$ (6)	-0.3387 (5)	6.7 (2)
(15)	-0.5034 (7)	0.3308 (6)	-0.3843 (5)	6.6 (2)
(16)	-0.4050 (6)	0.2387 (6)	-0.3470 (5)	$5 \cdot 6$ (2)
(17)	-0.1947 (4)	-0.1426 (4)	-0.3989 (4)	$3 \cdot 3$ (1)
(18)	-0.0605 (4)	-0.1809 (4)	-0.4256 (4)	$3 \cdot 4$ (1)
(19)	0.0003 (5)	-0.1884 (5)	-0.5301 (4)	4.8 (1)
(20)	-0.0725 (6)	-0.1611 (6)	-0.6075 (4)	5.9 (2)
(21)	-0.2006 (6)	-0.1253 (6)	-0.5842 (5)	$5 \cdot 7$ (2)
(22)	-0.2649 (5)	-0.1156 (5)	-0.4798(4)	4.5 (1)
(23)	0.0058 (4)	-0.2057 (4)	-0.3366 (4)	$3 \cdot 4$ (1)
(24)	0.1481 (4)	-0.2476 (5)	-0.3531 (5)	$4 \cdot 2$ (1)
(25)	0.3101 (6)	-0.2435 (9)	-0.2677 (8)	10.4 (3)
(26)	-0.0708 (4)	-0.1897 (4)	-0.2420 (3)	2.76 (9)
(27)	-0.0177 (4)	-0.2190 (4)	-0.1466 (4)	3.5 (1)
(28)	-0.0309 (6)	-0.1281 (7)	0.0337 (5)	$6 \cdot 7$ (2)
(29)	-0.3136 (4)	-0.1255 (4)	-0.0880 (4)	$3 \cdot 3$ (1)
(30)	-0.4451 (4)	-0.0781 (5)	-0.2545 (4)	4.0 (1)

fused, range from 114.7 (4) to $117 \cdot 1$ (3) ${ }^{\circ}$. Delocalization evidently does not extend to the carboxylate O atoms, which are twisted out of the plane of the rings, presumably for steric reasons. A similar effect was observed for the alkenyl complex $\left[\mathrm{Ru}(\mathrm{CO})_{2}-\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{Cl}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad$ (Holland et al., 1983).
The lengths of the bonds between the metal and the $s p^{2}$-hybridized C atoms $\mathrm{C}(17)$ and $\mathrm{C}(26)$ do not differ greatly. The bond to the alkene $\mathbf{C}(26)$ atom [2.099 (4) \AA] is shorter than that in $\left[\mathrm{Ru}(\mathrm{CO})_{2}-\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{Cl}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad[2 \cdot 16(2) \AA$ (Holland et al., 1983) where the organic ligand is monodentate, but a little longer than those in two other ruthenium(II) complexes, $[\mathrm{Ru}\{\mathrm{CH}=\mathrm{C}$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{Bu}\right) \mathrm{Me}\right\} \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ [2.061 (10) \AA] (Komiya, Ito, Cowie, Yamamoto \& Ibers, 1976) and $\left[\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2}-\right.\right.\right.$ $\left.\left.\mathrm{Me})=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{H}\right\}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{OH}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ [2.035 (4) \AA] (Raghavan \& Davis, 1975), in which the organic ligand is chelated to the metal (in these instances through the carbonyl O atom of a carboxylate group). The length of the alkene $\mathrm{C}=\mathrm{C}$ bond $\mathrm{C}(23)-\mathrm{C}(26)[1.352(7) \AA$] compares with $1 \cdot 141$ (3) and 1.368 (15) \AA for the corresponding bonds in

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for the non- H atoms

$\mathrm{Ru}-\mathrm{P}(1)$	$2 \cdot 362$ (1)	$\mathrm{O}(3)-\mathrm{C}(27)$	1-211 (6)
$\mathrm{Ru}-\mathrm{P}(2)$	$2 \cdot 364$ (1)	$\mathrm{O}(4)-\mathrm{C}(27)$	1.348 (6)
$\mathrm{Ru}-\mathrm{C}(17)$	$2 \cdot 123$ (5)	$\mathrm{O}(4)-\mathrm{C}(28)$	1.432 (7)
$\mathrm{Ru}-\mathrm{C}(26)$	2.099 (4)	$\mathrm{O}(5)-\mathrm{C}(29)$	$1 \cdot 143$ (6)
Ru-C(29)	1.918 (5)	$\mathrm{O}(6)-\mathrm{C}(30)$	$1 \cdot 134$ (6)
$\mathrm{Ru}-\mathrm{C}(30)$	1.914 (5)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.398 (7)
$\mathrm{P}(1)-\mathrm{C}(1)$	1.819 (5)	$\mathrm{C}(17)-\mathrm{C}(22)$	1.406 (7)
$\mathrm{P}(1)-\mathrm{C}(2)$	$1 \cdot 805$ (5)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.417 (7)
$\mathrm{P}(1)-\mathrm{C}(3)$	1.826 (5)	$\mathrm{C}(18)-\mathrm{C}(23)$	1.470 (7)
$\mathrm{P}(2)-\mathrm{C}(9)$	1.823 (5)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.386 (9)
$\mathrm{P}(2)-\mathrm{C}(10)$	1.821 (6)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.337 (9)
$\mathrm{P}(2)-\mathrm{C}(11)$	1.820 (5)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.421 (8)
$\mathrm{O}(1)-\mathrm{C}(24)$	1.205 (7)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.481 (7)
$\mathrm{O}(2)-\mathrm{C}(24)$	1.350 (7)	$\mathrm{C}(23)-\mathrm{C}(26)$	1.352 (7)
$\mathrm{O}(2)-\mathrm{C}(25)$	1.437 (8)	$\mathrm{C}(26)-\mathrm{C}(27)$	1.478 (6)
Phenyl rings: $\mathrm{C}(3)-\mathrm{C}(8)$ $\mathrm{C}(11)-\mathrm{C}(16)$	$\begin{aligned} & 1.339(11)-1.410(8) \text {, average } 1.376(9) \\ & 1.342(11)-1.408(8) \text {, average } 1.379(9) \end{aligned}$		
$\mathbf{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	171.0 (1)	$\mathbf{P}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	117.5 (4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(17)$	86.3 (1)	$\mathrm{P}(1)-\mathrm{C}(3)-\mathrm{C}(8)$	123.3 (4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(26)$	88.8 (1)	$\mathrm{P}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	120.9 (4)
$\mathbf{P}(1)-\mathrm{Ru}-\mathrm{C}(29)$	94.6 (2)	$\mathrm{P}(2)-\mathrm{C}(11)-\mathrm{C}(16)$	$120 \cdot 7$ (4)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(30)$	90.9 (2)	$\mathrm{Ru}-\mathrm{C}(17)-\mathrm{C}(18)$	115.0 (4)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(17)$	$85 \cdot 3$ (1)	$\mathrm{Ru}-\mathrm{C}(17)-\mathrm{C}(22)$	127.2 (4)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(26)$	86.1 (1)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	117.8 (5)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(29)$	$93 \cdot 2$ (2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.4 (5)
$\mathbf{P}(2)-\mathrm{Ru}-\mathrm{C}(30)$	93.0 (2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(23)$	114.7 (4)
$\mathrm{C}(17)-\mathrm{Ru}-\mathrm{C}(26)$	77.5 (2)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	124.8 (5)
$\mathrm{C}(17)-\mathrm{Ru}-\mathrm{C}(29)$	171.9 (2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119.9 (6)
$\mathrm{C}(17)-\mathrm{Ru}-\mathrm{C}(30)$	$94 \cdot 1$ (2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120.8 (6)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(29)$	94.4 (2)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120 \cdot 7$ (6)
$\mathrm{C}(26)-\mathrm{Ru}-\mathrm{C}(30)$	171.6 (2)	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	120.3 (5)
$\mathrm{C}(29)-\mathrm{Ru}-\mathrm{C}(30)$	93.9 (2)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	120.8 (5)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1)$	113.7 (2)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(26)$	$115 \cdot 7$ (4)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(2)$	116.5 (2)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(26)$	123.5 (5)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(3)$	115.3 (2)	$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{O}(2)$	121.8 (5)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$103 \cdot 5$ (3)	$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{C}(23)$	126.9 (5)
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	$103 \cdot 8$ (3)	$\mathrm{O}(2)-\mathrm{C}(24)-\mathrm{C}(23)$	111.3 (5)
$\mathbf{C}(2)-P(1)-C(3)$	$102 \cdot 3$ (3)	$\mathrm{Ru}-\mathrm{C}(26)-\mathrm{C}(23)$	$117 \cdot 1$ (3)
$\mathbf{R u}-\mathbf{P}(2)-\mathrm{C}(9)$	$117 \cdot 1$ (2)	$\mathrm{Ru}-\mathrm{C}(26)-\mathrm{C}(27)$	120.1 (3)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(10)$	$113 \cdot 3$ (2)	$\mathrm{C}(23)-\mathrm{C}(26)-\mathrm{C}(27)$	122.7 (4)
$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(11)$	116.0 (2)	$\mathrm{O}(3)-\mathrm{C}(27)-\mathrm{O}(4)$	122.7 (5)
$\mathrm{C}(9)-\mathrm{P}(2)-\mathrm{C}(10)$	$101 \cdot 9$ (3)	$\mathrm{O}(3)-\mathrm{C}(27)-\mathrm{C}(26)$	124.7 (5)
$\mathrm{C}(9)-\mathrm{P}(2)-\mathrm{C}(11)$	103.7 (3)	$\mathrm{O}(4)-\mathrm{C}(27)-\mathrm{C}(26)$	112.3 (4)
$\mathrm{C}(10)-\mathrm{P}(2)-\mathrm{C}(11)$	102.8 (3)	$\mathrm{Ru}-\mathrm{C}(29)-\mathrm{O}(5)$	178.5 (5)
$\mathrm{C}(24)-\mathrm{O}(2)-\mathrm{C}(25)$	115.4 (6)	$\mathrm{Ru}-\mathrm{C}(30)-\mathrm{O}(6)$	$178 \cdot 8$ (6)
$\mathrm{C}(27)-\mathrm{O}(4)-\mathrm{C}(28)$	116.4 (5)		
Phenyl rings: $\mathrm{C}(3)-\mathrm{C}(8)$ $\mathrm{C}(11)-\mathrm{C}(16)$	118.6 (6)-122.3 (7), average 120.0 (6) 118.3 (5)-122.7 (7), average 120.0 (6)		

Fig. 2. View of the packing in the unit cell of $\left[\mathrm{Ru}\left(\mathrm{CO}_{2}\right)-\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (b horizontal, \mathbf{c} vertical, a into the page).
$\left[\mathrm{Ru}(\mathrm{CO})_{2}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{Cl}\right\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (Holland et al., 1983) and $\left[\mathrm{Ru}\left\{\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Bu}\right)\right.\right.$ $\mathrm{Me}\} \mathrm{H}\left(\mathrm{PPh}_{3}\right)_{3}$] (Komiya et al., 1976), and the 'standard' $\mathrm{C}=\mathrm{C}$ bond length of $1.33 \AA$.

The similarity in length of the $\mathrm{Ru}-\mathrm{C}(17)$ and $\mathrm{Ru}-\mathrm{C}(26)$ bonds is reflected in the bonding to the carbonyl ligands $[\mathrm{Ru}-\mathrm{C}(29), 1.918$ (5); $\mathrm{Ru}-\mathrm{C}(30)$, 1.914 (5) \AA]. These bond lengths are very close to that [1.91 (2) \AA] to the carbonyl ligand trans to the alkenyl ligand in $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right.\right.$ $\left.\mathrm{Cl}\} \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (Holland et al., 1983).

The $\mathrm{Ru}-\mathrm{P}$ bond lengths [$\mathrm{Ru}-\mathrm{P}(1), 2 \cdot 362$ (1); $\mathrm{Ru}-\mathrm{P}(2), 2 \cdot 364$ (1) \AA] are in good agreement with the values observed for other ruthenium(II) complexes containing a pair of mutally trans $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands (Ashworth, Nolte, Singleton \& Laing, 1977; Dauter, Mawby, Reynolds \& Saunders, 1983).

The packing within the unit cell is shown in Fig. 2. The crystal packing is stabilized largely by van der Waals forces; the closest intermolecular contact involving the non-H atoms is $3.362(8) \AA$ $[\mathrm{O}(3) \cdots \mathrm{C}(5),-x,-1-y,-z]$ and between H atoms is $2 \cdot 21(4) \AA[\mathrm{H}(\mathrm{C} 2 B) \cdots \mathrm{H}(\mathrm{C} 2 B),-x,-1-y,-1-z]$.

We thank NAB for a research assistantship (to AJR).

References

Ashworth, T. V., Nolte, M. J., Singleton, E. \& Laing, M. (1977). J. Chem. Soc. Dalton Trans. pp. 1816-1822.

Crook, J. R., Chamberlain, B. \& Mawby, R. J. (1989). J. Chem. Soc. Dalton Trans. pp. 465-470.
Dauter, Z., Mawby, R. J., Reynolds, C. D. \& Saunders, D. R. (1983). Acta Cryst. C39, 1194-1196.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Holland, P. R., Howard, B. \& Mawby, R. J. (1983). J. Chem. Soc. Dalton Trans. pp. 231-237.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Komiya, S., Ito, T., Cowie, M., Yamamoto, A. \& Ibers, J. A. (1976). J. Am. Chem. Soc. 98, 3874-3884.

Raghavan, N. V. \& Davis, R. E. (1975). J. Cryst. Mol. Struct. 5, 163-176.

Acta Cryst. (1990). C46, 44-48

Structure of Bis(glycinato)zinc(II) Monohydrate, a Five-Coordinate Zinc(II) Complex

By Janet M. Newman,* Cedric A. Bear, \dagger Trevor W. Hambley and Hans C. Freeman
Department of Inorganic Chemistry, University of Sydney, Sydney 2006, Australia

(Received 17 November 1988; accepted 5 May 1989)

Abstract

Zn}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=231 \cdot 5\), triclinic, $P \overline{1}, a=9.165$ (7), $b=9.571$ (7), $c=10.438$ (9) \AA, α $=105.97(4), \quad \beta=106.19(4), \quad \gamma=107.12(4)^{\circ}, \quad V=$ 774 (2) $\AA^{3}, Z=4, D_{m}=1.97$ (2), $D_{x}=1.99 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \quad \lambda=0.71069 \AA, \mu=32.01 \mathrm{~cm}^{-1}, F(000)=$ 472, $T=294 \mathrm{~K}$. Final $R=0.028$ for 2056 observed reflections. There are two formula units in the asymmetric unit. Each of the two crystallographically independent Zn atoms is five-coordinate, is chelated by two glycinate molecules, and forms a fifth bond to a carboxyl O atom in a neighbouring bis(glycinato)zinc complex. The coordination is approximately square-pyramidal with a significant distortion towards trigonal-bipyramidal geometry. About 10\% of the Zn atoms of each type occupy alternative sites in which the chelating ligands and the coordination geometry are retained, but in which the fifth donor atom belongs to a different neighbouring complex. If

[^1]all the Zn atoms occupied positions half-way between their major and minor sites, the coordination would be octahedral, as originally proposed by Low, Hirshfeld \& Richards [J. Am. Chem. Soc. (1959), 81, 4412-4416]. The complexes are linked into polymeric sheets. The water molecules occupy interstitial positions.

Introduction. The structure of the glycinate complex of zinc was originally reported by Low, Hirshfeld \& Richards (1959) as part of a study of the coordination of zinc by amino acids. The complex was described as a 'most unpromising' candidate for a complete structure analysis under the conditions at that time. Not only were there eight bis(glycinato)zinc(II) monohydrate formula units in the triclinic unit cell, but all reflections described as having odd values of $\left[h+\frac{1}{2}(k-l)\right]$ were extremely weak. The corresponding cadmium complex, bis(glycinato)cadmium(II) monohydrate, crystallized in a space group of higher symmetry and was amenable to crystallographic analysis by two-dimensional © 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52199 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Present address: Department of Molecular Biology, Biomedical Centre, University of Uppsala, S-75124 Uppsala, Sweden. \dagger Present address: Australian Bureau of Statistics, Canberra, ACT, Australia.

